
International Journal of Theoretical Physics, Vol. 31, No. 10, 1992 

Quantum Logical Solution to the Measurement 
Problem of Quantum Mechanics 

Jeffrey Bub I 

Received February 11, 1992 

In this paper I propose a reformulation and solution of the measurement problem 
of quantum mechanics. The reformulation depends on a quantum logical inter- 
pretation of quantum mechanics, broadly construed. The solution depends on a 
theorem about partial Boolean algebras which is proved here. 

1. THE TRANSITION FROM CLASSICAL TO  
QUANTUM MECHANICS 

A classical system is described in terms of a commutative algebra of 
dynamical quantities. These quantities are all real-valued functions of  the 
state of  the system and take values at all times, even when the system is 
interacting with other systems. The set of states is given by all possible 
assignments of  values to a privileged set of  quantities, the (generalized) 
positions and momenta of the system. So a classical state maps the set of  
dynamical quantities onto a set of  corresponding values. Since these quanti- 
ties A, B , . . .  form a commutative algebra, the subalgebra of  idempotent 
quantities (quantities satisfying the condition A 2=/1) is a Boolean algebra. 
A classical state maps the idempotent quantities--representing all possible 
properties of  the system--onto the values 1 and 0, and this mapping is a 2- 
valued homomorphism on the algebra. So we can think of  a classical state 
as assigning a value "yes" or "no"  to every experiment designed to ascertain 
whether the system has a particular property or not, or we can think of  the 
state as assigning a binary truth value, " t rue"  or "false," to each classical 
proposition (asserting that the corresponding property is a property of the 
system in the given state), or we can think of  the state as partitioning 
the set of  possible properties of the system into the properties possessed by 
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the system in the state and the properties not possessed by the system in the 
state. 

A dynamical quantity is a magnitude associated with a set of possible 
values. An idempotent quantity is a quantity with only two possible values, 
1 or 0. The algebra of dynamical quantities can be generated by the subalge- 
bra of idempotent quantities, roughly because each quantity, e.g., position, 
corresponds to a set of idempotents, in this case the set of 2-valued quantities 
associated with each range of position. To assign a value to the position of 
a particle is equivalent to assigning a 1 to every range of positions containing 
the value and a 0 to every other range of positions. In other words, assigning 
a value to every classical quantity is equivalent to assigning a truth value to 
every classical proposition. 

I shall refer to the algebra of idempotent dynamical quantities of a 
system as the "property structure" of the system, The property structure of 
a classical system is a Boolean algebra. It represents, through its ultrafilters, 
all possible ways in which the system can manifest its properties, or all 
possible ways in which the properties of the system can fit together as simul- 
taneously determinate sets. To say that the (propositional) logic of classical 
mechanics is Boolean is to say that the class of models over which validity 
and associated semantic notions are defined, for the propositions of classical 
mechanics that assign ranges of values to dynamical quantities, is the class 
of Boolean property structures. 

The transition from classical to quantum mechanics involves the transi- 
tion from a commutative algebra of dynamical quantities to a noncommut- 
ative algebra, equivalently the transition from a Boolean to a non-Boolean 
algebra of idempotent quantities. This is, in effect, the formal significance 
of quantization. As in the classical case, the noncommutative algebra of 
dynamical quantities can be generated from the algebra of idempotents, the 
non-Boolean property structure of a quantum mechanical system. That the 
structure can be interpreted as a property structure in an analogous sense to 
the Boolean property structure of a classical system depends on the following 
analysis and the measurement theorem proved below. 

The non-Boolean property structure of a quantum mechanical system 
can be represented as a partial Boolean algebra, in effect a family of Boolean 
algebras that are pasted together by identifying certain elements. Consider, 
for example, a quantum mechanical system associated with a 3-dimensional 
Hilbert space. Each set of three orthogonal 1-dimensional subspaces defines 
an 8-element Boolean algebra generated by these subspaces as atoms of the 
algebra. The algebra contains the three atoms, the three planes spanned by 
these atoms pairwise, together with the zero element (0) corresponding to 
the null subspace, and the unit element (1) corresponding to the whole 3- 
dimensional space. Evidently, some of these 8-element Boolean algebras 
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have elements in common. For example, if we fix a 1-dimensional subspace 
and consider two choices for the remaining pair of orthogonal lines-- 

any initial pair o,~ff2, ~3 orthogonal to ~ffj, and any other pair Jf~, o,~ 
orthogonal to ~ff~--then the two 8-element Boolean algebras are pasted 
together at the elements 0, X1, o,~ff~, 1, where :r represents the plane 
orthogonal to ~ffl. The property structure of the system as a partial Boolean 
algebra is represented by the union of all the elements in each of the algebras 
generated by orthogonal triples of lines, together with the structural relations 
(order relations defined by subspace inclusion) holding between elements 
defined by the Boolean structure of the Boolean algebra to which the ele- 
ments belong. I shall write 6r = U ~ for this property structure, where the 
union is taken over all the (maximal) Boolean algebras generated by elements 
corresponding to orthogonal triples of lines in the Hilbert space W3. 
contains maximal Boolean subalgebras (8-element subalgebras) and also 
nonmaximal Boolean subalgebras (4-element Boolean subalgebras generated 
by elements corresponding to a line and its orthogonal plane as atoms). 
Some of these are pasted together in s162 and some are not. 

s represents the property structure of a quantum mechanical system. 
As constructed here, it is isomorphic to the partial Boolean algebra of sub- 
spaces of the Hilbert space of the system, or equivalently the partial Boolean 
algebra of projection operators of the system--just as the property structure 
of a classical mechanical system is a Boolean algebra ~ isomorphic to the 
Boolean algebra of (Borel) subsets of the phase space of the system, or 
equivalently the Boolean algebra of characteristic functions (0, 1 functions) 
on the Borel subsets of the phase space. Except in the special case of W.2, 
is not embeddable into any Boolean algebra. This means that there are no 
2-valued homomorphisms on s in the general case. A 2-valued homomorph- 
ism on a classical property structure ~ is defined by each classical state and 
partitions the elements in ~' into those properties that belong to the system 
in the given state (elements assigned the value 1 by the homomorphism) and 
those properties that do not belong to the system in the state (elements 
assigned the value 0). So a 2-valued homomorphism is a classical truth value 
assignment on the propositions represented by the elements in ~ ,  or a yes- 
no assignment on the corresponding properties represented by the elements 
in ~ .  As homomorphisms, these assignments respect the structure of ~. 

We can express the difference between s and ~ this way: All the 
elements of aM are determinate in each classical state, i.e., for every state, all 
the elements have a truth value (or yes-no value). What the truth value of 
a particular element is in a given state is determined or assigned by that 
state. This is not the case for a property structure s that is not embeddable 
into a Boolean algebra: only a proper subset of elements of L~' can be 
determinate for each quantum state. How are the determinate subsets 
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defined? There are various possible proposals here. The most natural is the 
following "principle of determinateness :" 

D: In a non-Boolean property structure La associated with a quantum 
mechanical system S, the elements that are determinate in the quantum state 

are those elements e represented by projection operators Pe such that 
Pv,<Pe or Pv,• 

This makes all elements of La associated with subspaces containing 
the state or orthogonal to the state determinate. Other elements of ~ are 
indeterminate in the state ~,. So the elements determinate in the state ~' are 
those elements e assigned probability 1 (P~,<--Pe) or 0 (Pv, ZPe) by ~t. 

There are two notions of state in classical mechanics: (1) the state s as 
a point in phase space, assigning values to all dynamical quantities, and (2) 
the state w as a probability measure on phase space. The first notion of state 
(call this a "property state") selects an ultrafilter of properties in the Boolean 
property structure ~ ,  associated with propositions (assigning ranges of 
values to the dynamical quantities) that are true in s. This ultrafilter corre- 
sponds to the properties or propositions represented by subsets of phase 
space containing s--these are the properties possessed by the system in the 
state s. Properties represented by subsets of phase space not containing s are 
not properties of the system in the state s. Equivalently, s defines a 2-valued 
homomorphism on ~ ,  with 1 corresponding to "true" or "possessed," and 
0 corresponding to "false" or "not possessed." The second notion of state 
(call this a "statistical state") assigns probabilities to elements of ~ .  

In quantum mechanics, the quantum state V plays a dual role: it is 
both the analogue of the classical property state s and the analogue of the 
statistical state w. As the analogue of the classical statistical state w, ~' 
assigns probabilities to elements in ~ .  As the analogue of the classical 
property state s, Vt partitions ~ '  into elements that are true or possessed by 
the system in the state ~, and elements that are false or not possessed by 
the system in the state ~t, in a subset of  elements of L that are determinate in 
the state ~ (i.e., a subset of elements that are true or false in the state ~, or 
possessed or not possessed by the system in the state o/). 

As defined by the principle D, this subset of elements of ~ generated 
by the state ~' has the following structure (in a finite-dimensional Hiibert 
space): ~, corresponds to an atom a v, in ~5r the minimal, nonzero element 
in ~ representing the 1-dimensional subspace ~ or the projection operator 
Pv,. Consider all the maximal Boolean subalgebras ~v, in ~ that contain a~, 
as atom. The set ~v, = U &,, is the set of elements in ~ determinate in the 
state gt, where the union is taken over all the (maximal) Boolean subalgebras 

_ _  + containing a v, as atom. We can write @v, as ~ v , - @ ~ w ~ , ,  where 
~-+ - U q/~,, the union of the ultrafilters (maximal filters) generated by a v, 
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in all the 9~v,, and ~ ~ = U Jr,  the union of the maximal ideals generated 
by the complement of a v, in all the By,. 

It is clear from the construction of ~ ~ and ~ ~ that the principle D 
selects determinate subsets of elements in .W, for each quantum state ~t, 
that are the appropriate non-Boolean or noncommutative analogues of the 
determinate subsets selected by a classical property state s (the subset 

~+ = q/, of properties possessed by a classical system in the state s, and the 
subset ~ - =  Js of properties that are not possessed by the system in the state 
s, where ~+  w ~ -=q /~  w J~=~) .  I have referred to the principle D as the 
"most natural" assumption here, but there are alternatives. Notably, Bohr's 
complementarity interpretation would not select the set of properties @ ~ as 
the set of properties possessed by a quantum mechanical system in the state 
~,. The set U #Jv is not a Boolean algebra (except in the case of Jr when 
U 9~v, reduces to a single maximal Boolean subalgebra in .W) and so ~ ~, 
contains many incompatible (noncommuting) elements. For Bohr, the set 
of properties or propositions that are determinate for a quantum mechanical 
system at a particular time t (the set of dynamical quantities that can mean- 
ingfully be asserted to have values at t, or the set of concepts that are jointly 
applicable to the system at t) is not determined by the state ~ at t, but rather 
by the classically described measurement context (and so contains only 
mutually compatible elements). 

2. THE MEASUREMENT PROBLEM REFORMULATED 

How should we formulate the measurement problem for classical mech- 
anics? In the case of optimal, ideal measurements, we want to show that, 
given an initial state for S and an initial state for the measuring instrument 
M (the zero indicator state), there exists an interaction that models the 
measurement of some S-quantity A by M, in the sense that the interaction 
correlates the values of A with the values of a physical quantity of M (the 
indicator values). This means that after a certain amount of time t, M should 
end up in some indicator state and S should end up in a state with a 
corresponding value of A, so that the value of the indicator quantity indicates 
the value of A. (Obvious modifications of this formulation for minimally 
disturbing measurements, or other realistic restrictions on measurements, do 
not concern the issues relevant here.) Since such interactions do, in principle, 
exist, the measurement problem, as a theoretical problem for classical mech- 
anics, is (trivially) soluble. 

How should the measurement problem be formulated for a theory of 
mechanics in which ~ is replaced by 5(.9 What we want to show is that, 
given the initial quantum state ~ of a system S and the initial quantum state 
P0 of a second system M (the measuring instrument) at some time to, where 
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P0 represents an eigenvector of the zero value of the indicator quantity of 
M, there exists an interaction that transforms the state of the composite 
system g| to a new state o-e~Vfs | at time t, in which (a) the proper- 
ties of S associated with ranges of values of the measured quantity A are 
determinate in the state o-, (b) the properties of M associated with ranges 
of values of the indicator quantity of M are determinate in the state o-, and 
(c) the values of the measured quantity A are correlated with the indicator 
values of M in the state or. 

Now, it is well known that no such interaction exists. If V = ak, where ak 
is an eigenstate of A corresponding to the eigenvalue ak, only the transition 
V| "-* aj| satisfies (a), (b), and (c), assuming the principle D, where 
p j  is an eigenvector of the jth eigenvalue rj of the indicator quantity of M. 
(Adding a "no disturbance" requirement restricts j to k.) It follows that if 
V= Y ', ciai, the interaction must yield the transition ~'| ~ tr= ~ ciai | 
pi, by linearity. Now requirement (c) is satisfied, but by the principle D, (a) 
and (b) both fail. The elements in Ar corresponding to the values a~ of A, 
i.e., the elements corresponding to the subspaces ~r~,| in ~ s |  do 
not belong to ~ .  Nor do the elements in Ae corresponding to the indicator 
values of M belong to ~ ,  i.e., the elements corresponding to the subspaces 
~s  |  in ~s  |  So neither the measured properties of S nor the indi- 
cator properties of M are determinate in the state or. 

What we appear to want at time t is not the state cr but the mixture 
W = ~  [ci[2p,,| because the transition ~| ~ W satisfies (a) and (b), 
as well as (c). But no unitary transformation can accomplish the transition 
from a pure state to a mixture, and so the measurement problem appears to 
be an inescapable feature of any theory in which a Boolean property struc- 
ture ~ is replaced by a non-Boolean structure s that is not, in the general 
case, imbeddable into any ~. 

This problem is often dramatized as the problem of Schrodinger's cat, 
where macroscopic properties of a cat become indeterminate in a measure- 
ment interaction. Suppose ~ is 2-dimensional and M is a cat, with p~ 
representing a quantum state of a live cat and P2 representing a quantum 
state of a dead cat. (We assume that the Hilbert space representing quantum 
states--microstates---of the cat can be decomposed into the span of two 
subspaces: ~Jive, the subspace of quantum states in which the cat is alive, 
and ~ , d ,  the subspace of quantum states in which the cat is dead. So 
p~ ~ ,  and PEeJfde~d-) Then, after the interaction with S, the cat is alive 
if the final state of the composite system is a~| the cat is dead if the 
final state is a2| but the cat is neither alive nor dead if the final state is 
the linear superposition cja~|174 This is because neither the 
cat-property "alive" (represented by the subspace ffg'~i~r nor the cat- 
property "dead" (represented by the subspace Jgd~d) belongs to ~,~ if 
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tr = cla~| + c2aa|  and so both these cat-properties are indeterminate 
in this state. 

But there is another constraint concerning cats that the theory fails to 
satisfy, a second cat problem, at least if we are prepared to accept the 
assumptions underlying the first problem. This second cat problem may be 
dramatized this way: Take a cat that is initially dead, i.e., initially represented 
by some quantum state in the subspace fdead (and so determinately dead 
by the principle D). Measure a dynamical quantity Y that does not com- 
mute with the dynamical quantity represented by the operator X = 
Palivo-/'dead (where Palivo is the projection operator onto the subspace ~g(aliv~ 
and Pde~d is the projection operator onto the subspace ~d~d). Note that X 
takes the value +1 if the cat is alive and -1  if the cat is dead. According to 
quantum mechanics, there will now be a finite probability that X takes the 
value +l ,  i.e., that the cat is alive, more precisely that the quantity X will 
be found to have changed its value from -1  to +l .  Since we take it for 
granted that dead cats cannot be resurrected, the failure of the theory to 
satisfy this constraint is dearly also a problem. [I think I first heard this 
problem years ago from Constantin Piron. Bas van Fraassen formulates a 
related problem he calls it the "benign cat paradox"--in his book (van 
Fraassen, 1991).] 

The second cat problem exploits a pervasive feature of quantum mech- 
anics: if we measure a sequence of dynamical quantities, X - Y - X ,  where X 
and Y do not commute, we will not necessarily obtain the same value for X 
on both measurements. In fact, this is a paradigm case of interference, the 
way in which noncommutativity manifests itself. If we deny the assumptions 
underlying the second cat problem (e.g., the appropriateness of a quantum 
mechanical description of the properties "alive" and "dead" of a cat, the 
existence of a dynamical quantity like Y that does not commute with X), 
we also deny the assumptions underlying Schrodinger's original cat problem. 
(Note that in the original problem we effectively assume the existence of a 
quantity P~,  tx = c~ a~| + C2aE| that does not commute with the quan- 
tity A |  of the composite systems S+  cat.) 

I suggest that the second cat problem--the resurrection problem--must 
be resolved before we can hope to find a solution to Schrodinger's original 
cat problem, or more generally, a solution to the measurement problem. It 
seems clear that we cannot avoid the resurrection problem without imposing 
a restriction on the superposition principle, i.e., without introducing super- 
selection rules in the theory. If we want it to be impossible to resurrect dead 
cats in a quantum mechanical universe, then certain linear superpositions of 
cat-states must be theoretically impossible. More generally, if we want to 
model, in the formalism of quantum mechanics, systems (like macrosystems) 
that are characterized by some (not necessarily all) dynamical quantities 
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that commute with all quantities, then there must be a restriction on the 
superposition principle for such "quasiclassical" systems that do not exhibit 
interference effects for all quantities. (Formally, such quasiclassical systems 
would be represented by algebras of dynamical quantities with nontrivial 
centers, i.e., algebras in which some quantities, aside from the unit, commute 
with all quantities.) 

The introduction of (discrete) superselection rules partitions the Hilbert 
space of a system into a countable set of orthogonal subspaces ~ ,  the 
superselection sectors or coherent subspaces of the system. A quasiclassical 
quantity R has the spectral representation R = ~ rjPj, where Pj is the projec- 
tion operator onto the coherent subspace Kj. Other quantities are required 
to leave the coherent subspaces invariant, i.e., to map vectors in ~j  into ~j,  
for all j. So the projection operators in the spectral representation of self- 
adjoint operators representing dynamical quantities all project onto sub- 
spaces of the ~ .  Other self-adjoint operators do not represent dynamical 
quantities of the system. So, every dynamical quantity is represented by a 
self-adjoint operator on the Hilbert space joe of the system, but not every 
self-adjoint operator on Yt ~ represents a dynamical quantity. 

Similarly, every pure state is represented by a unit vector in ~'~, but not 
every unit vector in ~ represents a pure state. Vectors represented by linear 
superpositions of vectors belonging to different coherent subspaces ff~j repre- 
sent mixtures. If ~b=~. djpj, p ie ty ,  then, for every projection operator P 
onto a subspace of some coherent subspace ~j,  we have 

(d?, Pdp )=~" Idjl2(pj, Ppj)=Tr(WP) 

where W = ~ Idjl2epj, and so ~b and W assign the same probabilities to all 
ranges of values of all dynamical quantities. In a modified quantum mechan- 
ics with superselection rules, there is no longer a 1-1 correspondence between 
states and statistical operators (density matrices) on dzt~ are no longer 
sufficient dynamical quantities to separate the set of statistical operators 
on H. 

The problem of modeling quasiclassical systems in quantum mechanics 
is a nontrivial problem that requires a solution, independently of any solu- 
tion to the problem of modeling measurement processes in the theory. Once 
this problem is resolved--and a solution surely requires introducing some 
restriction on the principle of superposition for macroscopic systems with a 
large number of degrees of freedom, such as cats and measuring instruments 
(or perhaps deriving such a restriction for systems with infinitely many 
degrees of freedom)--there is no further formal obstacle to a solution of 
the measurement problem. The effect of a restriction on the superposition 
principle is to guarantee the existence of quasiclassical systems with fixed 
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Boolean algebras of determinate properties, i.e., Boolean algebras of proper- 
ties that are always determinate, irrespective of the quantum state of the 
system. A macroscopic measuring instrument with n "pointer readings" or 
indicator values would then be modeled as such a system, and associated 
with a fixed Boolean algebra of determinate properties generated by n atoms 
corresponding to the properties represented by the indicator values. Simi- 
larly, a cat would be modeled as such a system, with the dynamical quantity 
X in the center of the algebra associated with a fixed Boolean algebra of 
determinate properties (so the cat would always be either determinately alive 
or, exclusively, determinately dead). 

The measurement problem then becomes the problem of showing that, 
given the initial quantum state ~ of a system S and the initial quantum state 
p0 of a second system M (the measuring instrument) at some time to, where 
P0 represents the zero indicator state of M, and the indicator values are values 
of  a quasiclassical dynamical quantity R of  M and so correspond to the atoms 
of  a fixed Boolean subalgebra ~ of  determinate properties in ~ ,  there exists 
an interaction that transforms the state of the composite system ~t| to a 
new state tr E ~ s  @~M at time t, in which the properties of S associated with 
the measured quantity A of S are (a) determinate in the state tr, and (b) 
correlated with the indicator values of M in the state tr. 

3. A MEASUREMENT THEOREM 

The possibility that a quantum system might be characterized by a fixed 
Boolean algebra ~ of determinate properties requires a modification of the 
principle D. As formulated, the principle of determinateness says that a 
certain set of properties ~ ,  is determinate for a composite system S +  M in 
the state tr. Suppose M is associated with a fixed Boolean algebra of determ- 
inate properties ~M. Then D will in general select a different set of determin- 
ate properties for M, via ~ ,  than the actual fixed set ~M. 

What we want is to modify the principle D so that if a system is associ- 
ated with a fixed Boolean algebra ~ of determinate properties, then we take 
as determinate (in the state u/) the union of all the Boolean algebras defined 
by completion from the elements in the set D v, = 0 ~8~,, given by the principle 
D, that are compatible with the elements in ~ ,  together with ~.  That is, for 
each ~ , ,  we take the elements in ~ ,  that are compatible with ~,  together 
with the elements in ~ ,  and complete the Boolean algebra by taking meets 
(infima), joins (suprema), and complements. Then we take the union over 
all these Boolean algebras as the set of properties that are determinate for 
the system in the state ~'. 

Note that completing the algebras in this way introduces new elements 
that do not belong to ~v, or to ~.  I shall write this set as ~v,/&, where ~ / ~  



1866 Bub 

indicates the operation of forming the union of the extensions of ~ to all 
Boolean algebras generated from Lr via meets, joins, and complements by 
the elements of ~ that are compatible with ~'. As the " / "  suggests, the 
operation is meant to be understood as a kind of conditionalization, or 
minimal revision of ~ by ~e. 

The following "modified principle of determinateness" captures this 
notion: 

D* : In a non-Boolean property structure Z~a associated with a quantum 
mechanical system S with a fixed Boolean subalgebra ~ of determinate 
properties, the elements that are determinate in the state ~ are those elements 
e that belong to the extension of ~' to any Boolean subalgebra of Z~a gener- 
ated by completion from all the elements in &, together with those elements 
in ~v, = U ~v, (defined according to the original principle D) that are com- 
patible with the elements in ~.  This set of elements is denoted by ~v,/~. 
(By "compatible" here I mean that one of the corresponding subspaces is 
contained in the other, or the two subspaces are orthogonal except for an 
overlap, where the overlap is the infimum or intersection of the subspaces. 
Equivalently, the corresponding projection operators commute.) 

A measurement theorem can now be proved for the principle D* : 

Theorem.  D * ensures that the Boolean algebra of properties associated 
with (ranges of) values of an indeterminate dynamical quantity A of a system 
S becomes determinate in an appropriate (measurement) interaction with a 
quasiclassical system M, i.e., a system with a fixed determinate Boolean 
algebra of properties associated with a quasiclassical quantity R, and no 
other incompatible Boolean algebra of properties in the property structure 
of S becomes determinate in the interaction. Moreover, no quantities Q of 
the composite system S+ M that are not of the form X| Ybecome determin- 
ate in the interaction, and no quantity of the quasiclassical system M is 
determinate after the interaction except R and refinements of R. 

Proof .  Suppose we measure a quantity A of S, with eigenvalues 
a~ . . . . .  a ,  and corresponding eigenvectors al . . . . .  an, by an interaction 
with an instrument M with a fixed Boolean algebra of determinate properties 
BM,  generated by the n + 1 atoms corresponding to the projection operators 
Po, P~, �9 �9 �9  Pn onto n + 1 multidimensional (perhaps oo-dimensional) sub- 
spaces f,- of Zf.M. The atoms of ~M represent the indicator values of M. 
Suppose the initial state of S is ~ = ~ cia~ and the initial state of M is P0 ~ 3r 
By the linearity assumption, the measurement interaction induces the 
transition 

~'| ~ cr = ~  c i a i |  
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By D*, after the measurement interaction, when the state of S+ M is 0-, the 
determinate properties of S + M are given by U ~,~/&m. What properties 
of S+  M belong to U ~,~/~M? 

To answer this question, first consider the subspace ~r174 of 
o~r174 where Jef~t is spanned by the vectors Pl . . . . .  p,. Note that 
0-e~s| Now construct [9 ~ ' / ~ t  (the restriction of U &,~/&M to 

I f ~S |  where ~ is a maximal Boolean subalgebra in the restricted 
property structure ~ '  of ~r |  generated by the atoms corresponding 
to 0- and any n 2 -  1 vectors orthogonal to o- in affs| and ~ t  is the 
Boolean subalgebra generated by the atoms corresponding to the projection 
operators I| . . . .  , I |  . 

Now, among the ~ "  there is a maximal Boolean subalgebra ~8" gener- 
ated by the atoms corresponding to the n 2 - n  orthonormal vectors a+| 
i r  (which are all orthogonal to 0- =)-'. ciai| and any n orthonormal 
vectors 0-, 0-2 . . . . .  0 - , (~a~|  spanning the n-dimensional subspace 
Jg e ~s  | Jcf~t �9 Since ~Y is orthogonal to the subspace spanned by the vectors 
a~| (iv~j), it follows that Jg is spanned by the vectors ai| i= 1 . . . . .  n. 
Note that the set {a+| 0-, 0-2 . . . . .  o-n} forms an orthonormal basis 
in ~ s |  The remaining ~ "  in the union are generated from atoms 
corresponding to o- and other sets of orthonormal basis vectors in 
~ = (~s  | Jg~t) - afro, the orthogonal complement of ~ in ~s  | 

All n Z - n  atoms in ~ "  corresponding to the vectors a~| ( i ~ j )  are 
compatible with ~ t ,  and none of the atoms corresponding to the vectors 
0-, 02 . . . . .  0", are compatible with ~ ~t. Let P be the projection operator 
onto the n-dimensional subspace ~Y', i.e., 

P =  P,r + Po-2 +" �9 " + P,~,= P,,~| Pt,, +" " " + P,,,,| 

Clearly the subspaces corresponding to P and l |  are orthogonal except 
for an overlap (the 1-dimensional subspace spanned by ak|  for each k), 
and so the corresponding elements are compatible. Equivalently, P com- 
mutes with I| (k= 1 , . . . ,  n), and the infimum of the elements corre- 
sponding to P and I| is Pa~| for k=  1 . . . . .  n: 

P ^ [|  = P .  I| = P~| 

So ~ / ~ +  is just the maximal Boolean subalgebra &~u in ~ '  generated 
by the n 2 atoms corresponding to the vectors a+| ( i = 1 , . . .  , n ; j =  
1 , . . . ,  n). 

Extending ~r to ~Vgm (hence ~ "  to ~ ,  ~ ~t to ~M, and .oq ~ to 5f) 
involves adding the subspaces ~0,~e-~ - ~ff;,, i= 1 . . . . .  n. Here ~M is the 
nonmaximal Boolean subalgebra of s generated by the n + 1 atoms corre- 
sponding to the projection operators I |  . . . . . .  I |  The Boolean 
algebra ~ ] u  is nonmaximal in ~ and is contained in a family of maximal 
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Boolean subalgebras of ~ that differ from : ~ M  by the addition of atoms 
corresponding to the tensor products of the vectors al with different choices 
of orthogonal vectors Pi.u [u= l  . . . . .  m(i)] spanning the subspace 
~ i - ~ , ,  for i=  1 . . . . .  n, and different choices of orthogonal vectors span- 
ning the subspace ~0 (assuming, for simplicity, that ~M is finite-dimensional, 
i.e., that each coherent subspace ~,-, i= 1 , . . . ,  n, is m(i)-dimensional). Each 
of these algebras contains the subalgebra :~AM generated by the n(n + 1) 
atoms corresponding to the projection operators Pa,| (i= 1 . . . . .  n;j= 
0 . . . .  , n), i.e., the nonmaximal Boolean subalgebra of properties corre- 
sponding to the indicator values of M and the properties of S measured by 
M. (Note that the subalgebra generated by the n 2 atoms corresponding to 
the projection operators P,~,| (i=1 . . . . .  n; =1 . . . . .  n) is isomorphic 
to .~M-)  

What has been demonstrated is that [,3 ~ / & M  contains ~A~, together 
with refinements of &AM generated by adding elements corresponding to 
subspaces contained in the subspaces ~ , |  (elements corresponding to 
refinements of the properties represented by the values of the indicator quan- 
tities of M). So, after the measurement, it follows from D* that the proper- 
ties of S measured by M are determinate, assuming that the Boolean algebra 
of indicator values of M is a fixed determinate set of properties of M. 

Moreover, there are no other properties of S, incompatible with the 
measured A-properties, that become determinate in the measurement inter- 
action. For suppose there is some quantity B incompatible (i.e., noncommut- 
ing) with A that becomes determinate in the measurement interaction, as 
well as A. There are two possibilities to consider here: Either the eigenvectors 
of B are related to the eigenvectors of A by a linear transformation involving 
all the eigenvectors ai in ~s ,  or one or more of the eigenvectors a; remain 
fixed in the transformation. 

Again, consider initially the subspace ~f~s| In the first case, no 
vectors of the form fl~| can be derived from a linear transformation of 
the vectors {ai| 0~ . . . . .  00n} orthogonal to 00 in the subspace 
~r To see this, first note that the vectors aj |  ( j=  1 . . . . .  n) lie in the 
n-dimensional subspace ~Y" and not in the subspace spanned by 002 . . . . .  o-n 
without o-, unless some of the coefficients in 00 are zero. Now fl~= ~ b~jctj, 
and by assumption bu#0 ( j=  1 . . . .  , n) so the coefficients of the terms aj |  
( j=  1 , . . . ,  n) in the representation of the fl~| in the basis ai| (i= 
1 , . . . ,  n; j - -  1 , . . . ,  n) will be nonzero, which means that no vector of the 
form fl~| lies in the subspace ~ffff, for any i, j. It follows that if the 
Boolean subalgebra ~ ' / ~ _  ~ ~ ,  for some B incompatible with A, then 
all the n 2 atoms of ~ must be generated as the infima of the elements 
corresponding to l| (k = 1 . . . .  , n) with elements corresponding to sub- 
spaces spanned by vectors obtained as linear superpositions of the vectors 



Quantum Logical Solution to Measurement Problem 1869 

{a~| 0-2 . . . . .  00,}. But at most n of  the required n 2 atoms can be 
generated this way. 

In the second case, if we fix one of  the eigenvectors, say ai = i l l ,  then 
at most 2(n - 1) = 2 n - 2  vectors of  the form fl,.| can be derived from a 
linear transformation of  the vectors {ai|  002 . . . . .  00n} in ~ .  
(Note that flJ| = a l |  cannot be derived in this way because it does 
not lie in the subspace ~ .) With at most n additional atoms generated via 
infima from the elements corresponding to I| (k = 1 . . . .  , n), this yields 
at total of  at most 3n - 2 atoms, which is less than the n 2 atoms required to 
generate g ~M, for all n > 1. 

To see this, consider first a 3-dimensional Hilbert space for ~ s  (i.e., n = 
3). Suppose fll = a l ,  t 2  = b22a2 + b2aa3, and f13 = b32a2 + b33a3. The n -  1 = 
2 vectors fl~|174 ( j = 2 , 3 )  and the n - l = 2  vectors fl2| = 
(b22a2+b23a3)| and f13|174 all belong to 3 f ~ .  
But the 5 vectors fll| f12| f12| fla| and f13| do not 
belong to JF ~ ,  because the coefficients of  a term of the form a~| 
for some j,  will be nonzero in the representation of  each of these vectors 
in the basis ai| ( i=1  . . . . .  n; j = l  . . . . .  n). (For  example, f12| 
(bE2tZ2 4-b23t;t3)| and b22 #0.) At most 3 of  the 5 atoms corresponding to 
these vectors can be generated by infirna from the elements corresponding 
to I| ( k=  1, 2, 3). 

If  ~ s  has more than 3 dimensions, we can keep one or more vectors 
fixed in the transformation from the A-basis to the B-basis, but in each case 
fewer than the required number of  atoms for &~M can be obtained by 
transformation of  the vectors (a~| 002 . . . . .  00n} in oW~* together 
with infima generated via the I| (k = 1 . . . . .  n). If we keep one vector 
fixed, we again obtain at most 2(n - 1) = 2 n - 2  vectors by transformation of  
the vectors {ai| # j ) ;  002,. �9 �9 00~} in 3f'~*. If  we keep two vectors fixed, 
at most 2 ( n - 1 ) + 2 ( n - 2 ) = 4 n - 6  vectors can be obtained by transforma- 
tion in the subspace ~r I f  we keep three vectors fixed, at most 
2 ( n - 1 ) + 2 ( n - 2 ) + 2 ( n - 3 ) = 6 n - 1 2  vectors can be obtained by trans- 
formation in ~,~*. In each case, adding at most n elements generated via 
infima from the l| we get too few atoms to generate ~ ,  i.e., 
3 n - 2 < n  2 for n > 3 ;  5 n - 6 < n  2 for n > 4 ;  7 n -  12<n 2 for n > 5 ;  and so on. 

There are clearly other formal quantities of  S +  M (represented by self- 
adjoint operators in ~ s  | oWM) that become determinate in the measurement 
interaction on the basis of  the principle D* alone. For  example, suppose we 
transform ~"~ to ~ by transforming a2| and a3| to 

~, = (1/, /~)a2| p, + (1/ ~ ) a  ~| p, = (1/ 4~)( a2 + a3)| 

132 = ( 1 / ~ ) a 2 |  - ( l ~ ) a 3 |  = ( 1 / ~ ) ( a 2 -  a~)| 
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respectively. Then the atoms corresponding to fit and t2 are compatible with 
� 9  ~ o - / ~ M - ~ ' ~  the elements corresponding to I| (k=0,  1, . .  n) and " ' - 

~ , .  Here ~ '  is a maximal Boolean subalgebra of properties in ~ ' ,  
assuming ~ '  is the full property structure derived from ~ s | 1 6 2  with- 
out superselection rules. Extending ~ s @ ~  to J(Cs@~M and S a' to 
yields a nonmaximal Boolean subalgebra of properties corresponding to 
some quantity Q of the composite system, with eigenvectors including the 
set { ai| i= 1 , . . . ,  n ; j=  1 . . . . .  n; a2| replaced by /~ ;  a3| replaced 
by/~2}- [The eigenspaces represented by the projection operators P~,@Po 
and Pai| ( P j -  Pe), i= 1 , . . . ,  n; j = 1 . . . . .  n, are also eigenspaces of Q.] So 
Q cannot be a dynamical quantity of the form X|  Y. 

Now none of these quantities, formally determinate on the basis of 
D*, can represent dynamical quantities of S+  M. If M is characterized by 
superselection rules, the effect is to restrict the set of quantities that represent 
dynamical quantities to those operators representable as linear sums of pro- 
jection operators onto the coherent subspaces of ~ s  |  Now, S+ M will 
also be subject to superselection rules and so quantities like Q, as well as 
the property (idempotent quantity) associated with Ps, will no longer be 
dynamical quantities of S+  M. 

This measurement theorem establishes that we can consistently interpret 
the non-Boolean algebra of idempotent dynamical quantities of a quantum 
mechanical system as a property structure analogous to the Boolean property 
structure of a classical mechanical system�9 The dynamical quantities of a 
quantum mechanical system are not all simultaneously determinate, i.e., they 
do not all possess values simultaneously�9 The set of dynamical quantities that 
are determinate for a system S is specified by the quantum state according to 
the principle D*. Indeterminate quantities of S become determinate in suit- 
able interactions with quasiclassical systems, and these interactions can be 
interpreted as measurements. 

I do not suggest here that the notion of a property that can sometimes 
be "determinate" and sometimes "indeterminate" is clear in a metaphysical 
sense, on the basis of the above analysis. The point of the analysis is to show 
that, once we grant that the determinate-indeterminate dichotomy applies to 
properties, the non-Boolean algebra of idempotent quantities of a quantum 
mechanical system can be interpreted as a property structure in which the 
transition from indeterminateness to determinateness arises as the result of 
interactions involving quasiclassical systems. 

What we require, in order to interpret the non-Boolean algebra of 
idempotent dynamical quantities of a quantum mechanical system as a prop- 
erty structure, is a principle that describes how determinateness is transformed, 
just as we require a principle that describes how truth is transformed in the 
Boolean property structures of classical mechanics, in which all properties 
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are simultaneously determinate. And this is provided by the principle D*. 
The equations of motion of classical mechanics do not generate values for 
dynamical quantities, or truth values for propositions. Rather, given initial 
values for certain quantities, or the truth values of certain propositions, 
classical mechanics shows how these values are transformed at other times 
(an initial assignment of values to certain dynamical quantities, or con- 
straints on the values of these quantities, determines values or constraints 
on values to these or other quantities at other times). Similarly, the unitary 
transformations of quantum mechanics cannot be expected to generate deter- 
minateness. Rather, given that certain quantities are determinate initially, 
the theory should show how determinateness is transformed and what quanti- 
ties are determinate at later times. And this is accomplished, according to 
the principle D*, once we are guaranteed the existence of quasiclassical 
systems with fixed determinate sets of properties in quantum mechanics. 
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